Найти значение производной функции: f(t)=sint +ctgt в точке t0=0,5П
F'(t) = (sin(t))' + (ctg(t))' = W (sin(t))' = cos(t), (ctg(t))' = (cos(t)/sin(t))' = (-sin(t)*sin(t) - cos(t)*cos(t))/sin^2(t) = = -1/sin^2(t), W = cos(t) - (1/sin^2(t)), f'(t0) = cos(п/2) - (1/sin^2(п/2)) = 0 - (1/1) = -1.