Помогите решить Преобразуйте в многочлен: а) 4х(2х – 1) – (х – 3)(х + 3); в) 7(а + b)2 –...

0 голосов
34 просмотров

Помогите решить
Преобразуйте в многочлен:
а) 4х(2х – 1) – (х – 3)(х + 3); в) 7(а + b)2 – 14аb.
б) (р + 3)(р – 11) + (р + 6)2;
2. Разложите на множители:
а) у3 – 49у; б) –3а2 – 6ab – 3b2.
3. Упростите выражение (а – l)2(a + 1) + (а + 1)(а – 1) и найдите его значение при а = – 3.
4. Представьте в виде произведения:
а) (у – 6)2 – 9у2; б) с2 – d 2 – с + d.
5. Докажите тождество (х – у)2 + (х + у)2 = 2(х 2 + у 2).

Алгебра (319 баллов) | 34 просмотров
Дан 1 ответ
0 голосов

1) 8x^2 - 4x - ( x^2 - 9) = 8x^2 - 4x - x^2 + 9= 7x^2 - 4x + 9
p^2 - 8p - 33 + p^2 + 12p + 36 = 2p^2  + 4p + 3
7( a^2 + 2ab + b^2) - 14ab = 7a^2 + 14ab + 7b^2 - 14ab = 7a^2 + 7b^2

2) y^3 - 49y = y( y^2 - 49) = y( y - 7)(y + 7)
- 3( a^2 + 2ab + b^2) = - 3(a + b)^2 = - 3( a + b)(a + b)

3) 2( a - 1)( a + 1) +( a + 1)(a - `1) = (a^2 - 1)(2 + 1) = 3(a^2 - 1) = 3a^2 - 3
При a = - 3:
3a^2 - 3 = 3*(-3)^2 - 3 = 27 - 3 = 24

4) ( y - 6 + 3y)(y - 6 - 3y) = ( 4y - 6)( - 2y - 6)
( c - d)(c + d) - (c - d) = ( c - d)( c + d - 1)

5) ( x - y)^2 + ( x + y)^2 = 2( x^2 + y^2)
x^2 - 2xy + y^2 + x^2 + 2xy + y^2 = 2x^2 + 2y^2
2x^2 + 2y^2 = 2x^2 + 2y^2 - верно,тождество доказано

(34.2k баллов)