Рассмотрим треугольник АОС. В неё высота одновременно является и медианой, а это значит, что треугольник АОС равнобедренный. По тому же признаку треугольник ВОС равнобедренный. А так как сторона ОС для обоих треугольников общая, то ОС=АО=ВО. Следовательно треугольник АОВ тоже равнобедренный. Если в равнобедренном треугольнике опустить высоту на основание, то она будет и медианой. То есть если из вершины О опустить высоту на основание АВ, обозначим её ОD, то получим два прямоугольных треугольника у которых углы при вершине О будут равны 60° (у равнобедренного треугольника высота является медианой и высотой), стороны AD=DB=10 м, а углы при А и В равны 30°. cos30°=√3/2=AD/AO. Отсюда АО=ОС=10*2/√3=20/√3≈11,55 м