В треугольнику АBC известно, что <С-90. AB 10 см, АС-8 см. ** продолжении катета АС...

0 голосов
29 просмотров

В треугольнику АBC известно, что <С-90. AB 10 см, АС-8 см. На продолжении катета АС вместо точки C означено точку М так, что СМ-6 см. Найдите отрезок BM


Геометрия (36 баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Треугольник АВС прямоугольный по условию, нам известны его гипотенуза и катет, по теореме Пифагора находим второй катет:
(ВС)2[в квадрате] = (АВ)2 - (АС)2
(ВС)2 = 100 - 64 = 36
ВС = 6 (см)
Далее тоже по теореме Пифагора находим гипотенузу уже другого треугольника, но тоже прямоугольного МВС:
(ВМ)2 = (ВС)2 + (МС)2
(ВМ)2 = 36 + 36 = 72
ВМ = 6√2 (см)
Ответ: 
6√2 см

Элементарно ;)

(114 баллов)
0

Спасибо, я просто сомневалась насчет числа 72, так как из него корень не добывается. :))

0

почему же, не обязательно, чтобы в ответе число было целым, зачастую могут получатся такие ответы, как в данном случае корни или же дроби. Как например в случае с корнями, если в ЦТ в части Б получился ответ с корнем часто иногда просят домножить или поделить полученный ответ на корень(если конечно вы правильно посчитаете и у вас действительно получится число с корнем)