Решать следует от противного
Предположим, что каждый ученик совершил неодинаковое количество ошибок
То есть мы должны получить 30 разных неотрицательных чисел. Причем наибольшее из них - 14
Но неотрицательных чисел, меньше 14 всего 14, считая "0". Что значительно меньше общего числа учеников
Потому наше утверждение не может быть верным, а значит кто-то из учеников обязательно допустил одинаковое количество ошибок
Кроме Пети 29 учеников осталось, а вариантов сколько у них будет ошибок всего 14 . Значит 29\14=2 человека на вариант количества ошибок и 1 в остатке, так как остается 1, то по крайне мере 3 ученика сделали одинаковое количество ошибок.