
2}(2-x)/(4-x^2) - ?, \ lim_{x - > 2}(2-x)-> 0, \\ lim_{x - > 2}(4-x^2)-> 0\\\\ f(x) = (2-x), f'(x) = -1, g(x) = (4-x^2), g'(x) = -2x" alt="3) lim_{x - > 2}(2-x)/(4-x^2) - ?, \ lim_{x - > 2}(2-x)-> 0, \\ lim_{x - > 2}(4-x^2)-> 0\\\\ f(x) = (2-x), f'(x) = -1, g(x) = (4-x^2), g'(x) = -2x" align="absmiddle" class="latex-formula">
lim_{x -> 2}(f'(x)/g'(x)) = lim_{x -> 2}1/2x = 1/4
Использовали правило Лопиталя.