(\frac{3}{2})^{-1}\\\\2t> -1\\\\t> -\frac{1}{2}\\\\t\in (-\frac{1}{2},+\infty )" alt="2)\; \; 9^{t}+5\cdot 3^{2t}\ \textgreater \ 4^{t}+3\cdot 2^{2t}\\\\9=3^2\; ,\; 4=2^2\\\\3^{2t}+5\cdot 3^{2t}\ \textgreater \ 2^{2t}+3\cdot 2^{2t}\\\\6\cdot 3^{2t}\ \textgreater \ 4\cdot 2^{2t}\, |:2^{2t}\ \textgreater \ 0\\\\6\cdot \frac{3^{2t}}{2^{2t}}\ \textgreater \ 4\, |:6\ \textgreater \ 0\\\\(\frac{3}{2})^{2t}\ \textgreater \ \frac{4}{6}\; \; \; \; (\; \frac{4}{6}=\frac{2}{3}\; )\\\\(\frac{3}{2})^{2t}> (\frac{3}{2})^{-1}\\\\2t> -1\\\\t> -\frac{1}{2}\\\\t\in (-\frac{1}{2},+\infty )" align="absmiddle" class="latex-formula">