1) Полагаю, что n ∈ Z
5, \ 0! = 1, \ n! = 1*2*...*n\\\\ (n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ (n-1)!/(n-6)!\\\\ (1-n)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\-(n-1)!/(n-6)!\\\\ (n-1)*(2-n)*(n-3)*(n-4)*(n-5) =\\ -(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)!/(n-6)!\\\\ (1-n)*(2-n)*(3-n)*(4-n)*(5-n) =\\ (-1)^5(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)!/(n-6)!\\\\" alt="if \ n > 5, \ 0! = 1, \ n! = 1*2*...*n\\\\ (n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ (n-1)!/(n-6)!\\\\ (1-n)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\-(n-1)!/(n-6)!\\\\ (n-1)*(2-n)*(n-3)*(n-4)*(n-5) =\\ -(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)!/(n-6)!\\\\ (1-n)*(2-n)*(3-n)*(4-n)*(5-n) =\\ (-1)^5(n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ -(n-1)!/(n-6)!\\\\" align="absmiddle" class="latex-formula">
0\\\\ (n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ (-m-1)*(-m-2)*(-m-3)*(-m-4)*(-m-5) =\\ (-1)^5(m+1)*(m+2)*(m+3)*(m+4)*(m+5) =\\ -(m+5)!/m!\\\\ " alt="if \ n = 1, 2, 3, 4 \ or \ 5\\\\ 0\\\\ if \ n < 0, \ -n = m, \ m > 0\\\\ (n-1)*(n-2)*(n-3)*(n-4)*(n-5) =\\ (-m-1)*(-m-2)*(-m-3)*(-m-4)*(-m-5) =\\ (-1)^5(m+1)*(m+2)*(m+3)*(m+4)*(m+5) =\\ -(m+5)!/m!\\\\ " align="absmiddle" class="latex-formula">