Найдем частные производные второго порядка:
(d^2x(a,b))/(da^2) = (2(-b^2+5b^3))/(-a-b+5ab)^3
(d^2x(a,b))/(da db) = (2ab)/(-a-b+5ab)^3
(d^2x(a,b))/(db^2) = (2(-a^2+5a^3))/(-a-b+5ab)^3
Найдем значения этих производных в т.Mn, если точка Mn не одна, находим все значения.
Найдем Δ=AC-B^2, где
A=f''aa(a0;b0)=(d^2x(a,b))/(da^2), В=ƒ''ab(a0;b0)=(d^2x(a,b))/(da db), С=ƒ''bb(a0;b0)=(d^2x(a,b))/(db^2).
(самостоятельно)
Получим некие значения Δ (если Мn одна, то значение одно)
Возможны такие варианты:
1. если Δ > 0, то функция ƒ(х;у) в точке (х0;у0) имеет экстремум: максимум, если А < 0; минимум, если А > 0;
2. если Δ < 0, то функция ƒ(х;у) в точке (х0;у0) экстремума не имеет.
В случае Δ = 0 экстремум в точке (х0;у0) может быть, может не быть. Необходимы дополнительные исследования.
(в одном из решений должно получиться Δ > 0 и А > 0)
(все решаем самостоятельно)
После всего координаты т. Мn, в которой Δ > 0 и А > 0 подставляем в
x =(5a^2b-a^2+5ab^2-ab-b^2)/(5ab-a-b) и находим минимальное значение суммы чисел а,b и с.
Помимо всего, у нас еще и значеня самих а, b и с получатся а и b это координаты т. Мn (3/5,3/5), которая удовлетворяет условию Δ > 0 и А > 0, а значение с найдем из c =(ab)/(5ab-a-b).
Ответ:
min{x =(5a^2b-a^2+5ab^2-ab-b^2)/(5ab-a-b)} = 9/5 при (a,b) =(3/5, 3/5) и с=3/5.
Все.
Проще я не знаю как.