Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок.
==========
Решение:
Докажем, что .
1) Так как — биссектриса, то (биссектриса делит на два равные угла).
2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ).
3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
Ответ: 13.
=========
Ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.