Окружность вписанная в прямоугольную трапецию , делит точкой касания большую боковую...

0 голосов
109 просмотров

Окружность вписанная в прямоугольную трапецию , делит точкой касания большую боковую сторону на отрезки длиной 25 и 36 см . Найдите радиус окружности.


Геометрия (26 баллов) | 109 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Центр вписанной в трапецию окружности лежит в точке пересечения её биссектрис.
биссектрисы смежных углов трапеции пересекаются под прямым углом,
поэтому треугольник с вершиной в центре окружности и основанием - боковой наклонной стороной трапеции - прямоугольный с прямым углом при вершине, которая является центром окружности.
радиус перпендикулярен касательной => искомая величина h - это длина перпендикуляра опущенного из прямого угла =>
h^2 = ab = 25 * 36
h = 5 * 6 = 30
Ответ: 30.

(6.4k баллов)