А) Сумма арифметической прогрессии a1 = 100, d = 1, n = 100
S(100) = (100 + 199)*100/2 = 299*50 = 14950.
Нам надо разбить этот ряд на два ряда с суммой 14950/2 = 7475 каждый.
Пусть это будет ряд от 100 до 100+n-1, всего n членов.
S(n) = (100 + 100 + n - 1)*n/2 = (199 + n)*n/2 = 7475
n^2 + 199n = 7475*2 = 14950
n^2 + 199n - 14950 = 0
D = 199^2 + 4*14950 = 39601 + 59800 = 99401 ~ 315 (не точный квадрат)
n = (-199 + 315)/2 = 116/2 = 58.
Точно не получается, но можно подобрать.
S(58) = (100 + 157)*58/2 = 257*29 = 7453
S(59) = (100 + 158)*59/2 = 258/2*59 = 129*59 = 7611
А нам надо 7475, то есть на 136 меньше, чем 7611.
Берем первый ряд: 100, 101, 102, ..., 135, 137, 138, ..., 158, 159.
И второй ряд: 136, 160, 161, ..., 199.
Ответ: да, это хорошее множество.
б) Сумма геометрической прогрессии b1 = 2, q = 2, n = 200
S(200) = b1*(q^n - 1)/(q - 1) = 2*(2^200 - 1)/(2 - 1) = 2*(2^200 - 1)
Нужно разделить на два ряда с суммой 2^200 - 1 каждый.
Но это невозможно, потому что последний член 2^200 больше суммы.
Ответ: нет, это не хорошее множество.
в) (3,4,5,6), (3,4,5,12), (3,5,6,8), (3,5,8,10), (3,5,10,12), (4,6,8,10), (4,6,10,12), (6,8,10,12)
Получилось 8 подмножеств.