Помогите решить пожалуйста, хотя бы несколько

0 голосов
48 просмотров

Помогите решить пожалуйста, хотя бы несколько


image

Алгебра (1.2k баллов) | 48 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1.
\lim_{n \to \infty} \frac{sin(n^3-4)+2n}{3n^2-1}=\lim_{n \to \infty} \frac{ \frac{sin(n^3-4)}{n^2} + \frac{2}{n} }{3- \frac{1}{n^2} }=0
2.
\lim_{n \to \infty} \frac{1,5n^2+2n-1}{2n^2+n-8}=\lim_{n \to \infty} \frac{1,5+ \frac{2}{n} - \frac{1}{n^2} }{2+ \frac{1}{n} - \frac{8}{n^2} }=0,75
3.
\lim_{n \to \infty} \frac{ \sqrt{3n-1}- \sqrt{2n+1}}{\sqrt n}=\lim_{n \to \infty} \frac{3n-1-(2n+1)}{\sqrt{n}(\sqrt{3n-1}+\sqrt{2n+1})}=\lim_{n \to \infty} \frac{n-2}{n(\sqrt{3- \frac{1}{n} }+\sqrt{2+\frac{1}{n}})}=\lim_{n \to \infty} \frac{1- \frac{2}{n} }{\sqrt{3- \frac{1}{n} }+\sqrt{2+\frac{1}{n}}}=\frac{1}{\sqrt3+\sqrt2}=\sqrt3-\sqrt2
4.
\lim_{x \to1} \frac{sin( \frac{ \pi x}{2})}{x^2+x-1}=\frac{sin \frac{ \pi}{2}}{1^2+1-1}=sin \frac{ \pi}{2}}=1
5.
\lim_{x \to-3} \frac{x^2+2x-3}{x^2+x-6}=\lim_{x \to-3} \frac{(x-1)(x+3)}{(x-2)(x+3)}=\lim_{x \to-3} \frac{x-1}{x-2}=\frac{-4}{-5}=\frac{4}{5}
6.
\lim_{x \to0} \frac{sin(x^2)}{xtg(2x)}=\lim_{x \to0} \frac{x^2}{x*2x}=\lim_{x \to0} \frac{x^2}{2x^2}=\frac{1}{2}
7.
\lim_{x \to \infty}( \frac{x^2+2}{x^2+1})^{x^2+3x-1}=\lim_{x \to \infty}( \frac{(x^2+1)+1}{x^2+1})^{(x^2+1)+(3x-2)}=\lim_{x \to \infty}[(1+\frac{1}{x^2+1})^{x^2+1}*(1+\frac{1}{x^2+1})^{3x-2}]=\lim_{x \to \infty}(1+\frac{1}{x^2+1})^{x^2+1}*\lim_{x \to \infty}(1+\frac{1}{x^2+1})^{3x-2}=e*\lim_{x \to \infty}(1+\frac{1}{x^2+1})^{3x-2}
7-й пока не выходит...

(23.0k баллов)
0

Думаю, вы правы. Но как корректно это показать?

0 голосов

1.
\lim_{n \to \infty} \frac{sin(n^3-4)+2n}{3n^2-1}= \lim_{n \to \infty} \frac{2n}{3n^2} = \lim_{n \to \infty} \frac{2}{3n} =0

2.
\lim_{n \to \infty} \frac{1,5n^2+2n-1}{2n^2+n-8} = \lim_{n \to \infty} \frac{1,5n^2}{2n^2}=\frac{1,5}{2}=0,75

3.
\lim_{n \to \infty} \frac{ \sqrt{3n-1}-\sqrt{2n+1} }{\sqrt{n}} =\lim_{n \to \infty} \frac{ \sqrt{3n^2-n}-\sqrt{2n^2+n} }{n}= \\ \lim_{n \to \infty} \frac{ n \sqrt{3} -n \sqrt{2} }{n} = \sqrt{3} - \sqrt{2}

4.
\lim_{x \to 1} \frac{sin( \frac{ \pi x}{2} )}{x^2+x-1} = \lim_{x \to 1} \frac{ 1}{1} =1

5.
\lim_{x \to -3} \frac{x^2+2x-3}{x^2+x-6}
x²+2x-3=0
D=2²+4*3=4+12=16    √D=4
x₁=(-2-4)/2=-3
x₂=(-2+4)/2=1
x²+2x-3=(x+3)(x-1)

x²+x-6=0
D=1+4*6=25  √D=5
x₁=(-1-5)/2=-3
x₂=(-1+5)/2=2
x²+x-6=(x+3)(x-2)
\lim_{x \to -3} \frac{x^2+2x-3}{x^2+x-6} =\lim_{x \to -3} \frac{(x+3)(x-1)}{(x+3)(x-2)}=\lim_{x \to -3} \frac{x-1}{x-2}= \frac{-4}{-5} =0,8

6.
\lim_{x \to 0} \frac{sin(x^2)}{xtg(2x)}= \lim_{x \to 0} \frac{x^2}{2x^2}= \frac{1}{2}






(101k баллов)