Задачка интересная, смотри, как такие решаются.
В таких задачках главное- последняя цифра числа, которое возводится в степень
В первом случае 2001 оканчивается на 1, а 1 в любой степени 1, поэтому и 2001 в любой степени оканчивается на 1.
Во втором случае число оканчивается на 9. Исследуем, на какую цифру будут оканчиваться степени 9
Степень Последняя цифра 9^n
1 9
2 1
3 9
4 1
и т.д. уже видно, что при возведении в чётную степень последняя цифра 1, в нечётную - 2
. Таким образом
1999^2002 оканчивается на 1 (2002 - чётное число)
1999^1333 оканчивается на 2 (1333 - нечётное число).
Вот, примерно, так.
Попробуй исследовать поведение последней цифры числа 2013^n, 1917^n. Получится интересней.
Ну и последнее. Всё это просто рассуждения, а как же это всё доказать, можешь ты спросить. Так же просто. Смотри, например, случай 1.
Любое число, оканчивающееся на 1 можно представить в виде 10*к +1. Значит его степень
(10*к+1)^n = 10^n*k^n + ...........+1^n(это бином Ньютона) = 10*R +1.
то есть любое число, оканчивающееся на 1 в любой степени оканчивается на 1.
Так же через бином Ньютона доказывается и всё остальное.
Успехов!
Да, и ещё. Условие у тебя очень нечёткое, если в самом деле нет запятых, то в 1 - решение то же, а в 2 нужно поисследовать ещё на какую цифру оканчивются степени 2002, то есть 2
степень посл. цифра 2^n
1 2
2 4
3 8
4 6
5 2
6 4
7 8
ну и тд. то есть это всегда чётное число, поэтому
(1999)^(2002^1333) оканчивается на 1, так как показатель чётный.
Вот теперь совсем всё.
Пиши четче задания! Видишь, как много может значить какая-то запятая!