Кривая проходит через точку (2; -1) и обладает тем свойством, что угловой коэффициент...

0 голосов
59 просмотров

Кривая проходит через точку (2; -1) и обладает тем свойством, что угловой коэффициент касательной в любой ее точке пропорционален квадрату ординаты точки касания с коэффициентом пропорциональности k = 3. Найти уравнение кривой


Математика (33 баллов) | 59 просмотров
Дан 1 ответ
0 голосов

Пусть уравнение кривой выглядит так:
y = f(x)
Тогда угловой коэффициент касательной в любой точке равен:
k = f'(x)
С другой стороны:
k = 3y^2
Приравнивая, получаем:
dy/dx = 3y^2
Получили квадратное уравнение. Оно простое, с разделяющимися переменными. Решаем:
dy/y^2 = 3dx
-1/y = 3x + C
y = -1/(3x + C)
Найдем С. Для этого вспомним, что кривая проходит через точку А (2, -1). Подставляя координаты точки А получаем:
-1 = -1/(6 + C)
-6 - C = - 1
C = -5
Итого искомое уравнение:
у = -1/(3x - 5)

(74 баллов)