Возможно, вы имели в виду в правильной четырехугольной призме авсда1в1с1д1 сторона ав=4...

0 голосов
58 просмотров

Возможно, вы имели в виду в правильной четырехугольной призме авсда1в1с1д1 сторона ав=4 боковая сторона =2. Точка Е-середина ребра вв1.Найти расстояние от точки В до плоскостиАС1Е


Геометрия (20.4k баллов) | 58 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Цитата: "Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники."
Диагональ основания призмы ВD параллельна диагонали сечения ЕЕ1 (доказывать не надо). Тогда ВЕ=ОО1, а искомое расстояние от В до плоскости АЕС1 равно перпендикуляру ОН, основание которого Н лежит на диагонали призмы АС1. В треугольнике ОНО1 угол <НОО1 равен углу треугольника АСС1 <CAC1, как углы с соответственно перпендикулярными сторонами. Cos(<CAC1)=АС/АС1. <br>АС - диагональ основания призмы (квадрата) и равна 4√2.
АС1 - диагональ призмы (и диагональ сечения) и равна √(АС²+СС1²)=√(32+4)=6. Тогда Cos(<СAC1)=4√2/6=2√2/3.<br>В треугольнике ОНО1: ОН=ОО1*Cos(Ответ: искомое расстояние равно 2√2/3.

Координатный метод: поместим начало координат в точку В. Пусть ВС- ось X, BB1- ось Y, BA - ось Z.
Мы имеем:
Точки А(0;0;4)В(0;0;0), Е(0;1;0), C1(4;2;0).
Теперь можем написать уравнения плоскости, проходящей через 3 точки и найти расстояние от точки В до плоскости АЕС1.
Для составления уравнения плоскости АЕС1 используем формулу:
|x - xА  xЕ - xА  xС1 - xА|
|y - yА  yЕ - yА  yС1 - yА| = 0.
|z - zА  zЕ - zА  zС1 - zА|
Подставим данные трех наших точек А,Е и С1:
|х-0  0   4 |     
|y-0  1   2 | = 0.
|z-4 -4  -4 |
Раскрываем определитель по первому столбцу, находим уравнение
плоскости:
    | 1  2 |       | 0   4 |             |0  4|
 х*|-4 -4 | - y*|-4  -4 | + (z-4)*|1  2| =0.
Или:
 x(-4+8)- y(0+16) +(z-4)(0-4)=0 или 4x-16y-4z+16=0 или x-4y-z+4=0.
Итак, имеем плоскость в виде Ax+By+Cz+D=0:
x-4y-z+0=0, где А=1, В=-4, С=-1, D=4 и точку В(0;0;0).
Надо найти расстояние от этой точки до плоскости.
Если задано уравнение плоскости Ax + By + Cz + D = 0, то расстояние от точки В(Вx, Вy, Вz) до плоскости можно найти, используя следующую формулу:
d=|A*Bx+B*By+C*Bz+D|/√(A²+B²+C²); В нашем случае:
d=|4|/√(1+16+1)=4/(3√2)=2√2/3.
Ответ: расстояние от В до плоскости АЕС1 равно 2√2/3.


image
(117k баллов)
0

Всё прекрасно! В школьной программе матриц нет!