НАйдем длины сторон поформуле ![AB=\sqrt{(x_2-x_2)^2+(y_2-y_1)^2+(z_2-z_1)^2} AB=\sqrt{(x_2-x_2)^2+(y_2-y_1)^2+(z_2-z_1)^2}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%28x_2-x_2%29%5E2%2B%28y_2-y_1%29%5E2%2B%28z_2-z_1%29%5E2%7D)
![AB=\sqrt{(3-1)^2+(-1+1)^2+(1-3)^2}=\sqrt{4+4}=2\sqrt{2} AB=\sqrt{(3-1)^2+(-1+1)^2+(1-3)^2}=\sqrt{4+4}=2\sqrt{2}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%283-1%29%5E2%2B%28-1%2B1%29%5E2%2B%281-3%29%5E2%7D%3D%5Csqrt%7B4%2B4%7D%3D2%5Csqrt%7B2%7D)
![BC=\sqrt{(-1-3)^2+(1+1)^2+(3-1)^2}=\sqrt{16+4+4}=2\sqrt{6} BC=\sqrt{(-1-3)^2+(1+1)^2+(3-1)^2}=\sqrt{16+4+4}=2\sqrt{6}](https://tex.z-dn.net/?f=BC%3D%5Csqrt%7B%28-1-3%29%5E2%2B%281%2B1%29%5E2%2B%283-1%29%5E2%7D%3D%5Csqrt%7B16%2B4%2B4%7D%3D2%5Csqrt%7B6%7D)
![AC=\sqrt{(-1-1)^2+(1+1)^2+(3-3)^2}=\sqrt{4+4}=2\sqrt{2} AC=\sqrt{(-1-1)^2+(1+1)^2+(3-3)^2}=\sqrt{4+4}=2\sqrt{2}](https://tex.z-dn.net/?f=AC%3D%5Csqrt%7B%28-1-1%29%5E2%2B%281%2B1%29%5E2%2B%283-3%29%5E2%7D%3D%5Csqrt%7B4%2B4%7D%3D2%5Csqrt%7B2%7D)
Треугольник равнобедренный с основанием ВС
Найдем угол А по теореме косинусов
![cosA=\frac{AB^2+AC^2-BC^2}{2*AB*AC} cosA=\frac{AB^2+AC^2-BC^2}{2*AB*AC}](https://tex.z-dn.net/?f=cosA%3D%5Cfrac%7BAB%5E2%2BAC%5E2-BC%5E2%7D%7B2%2AAB%2AAC%7D)
Угол А=120°
Найдем периметр
![P=2\sqrt{6}+2\sqrt{2}+2\sqrt{2}=2\sqrt{6}+4\sqrt{2} P=2\sqrt{6}+2\sqrt{2}+2\sqrt{2}=2\sqrt{6}+4\sqrt{2}](https://tex.z-dn.net/?f=P%3D2%5Csqrt%7B6%7D%2B2%5Csqrt%7B2%7D%2B2%5Csqrt%7B2%7D%3D2%5Csqrt%7B6%7D%2B4%5Csqrt%7B2%7D)
Найдем площадь треугольника, но сначала найдем высоту.
Так как углол при основании равен 30°, то высота будет равна 1/2*АВ
![h=\frac{1}{2}*2\sqrt{2}=\sqrt{2} h=\frac{1}{2}*2\sqrt{2}=\sqrt{2}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B1%7D%7B2%7D%2A2%5Csqrt%7B2%7D%3D%5Csqrt%7B2%7D)
![S=\frac{1}{2}*BC*h S=\frac{1}{2}*BC*h](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B1%7D%7B2%7D%2ABC%2Ah)
![S=\frac{1}{2}*2\sqrt{6}*\sqrt{2}=3\sqrt{3} S=\frac{1}{2}*2\sqrt{6}*\sqrt{2}=3\sqrt{3}](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B1%7D%7B2%7D%2A2%5Csqrt%7B6%7D%2A%5Csqrt%7B2%7D%3D3%5Csqrt%7B3%7D)