Высота правильной треугольной пирамиды равна а(корень из 3), радиус окружности, описанной...

0 голосов
666 просмотров

Высота правильной треугольной пирамиды равна а(корень из 3), радиус окружности, описанной около ее основания, 2а.найдите:
а) апофему пирамиды
б)угол между боковой гранью и основанием
в)площадь боковой повверхности


Геометрия (34 баллов) | 666 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

АВСЕ - пирамида с вершиной Е.
В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. 
ОК=ОВ/2=2а/2=а.
ЕК - апофема на сторону АС.
В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а²,
ЕК=2а - апофема.
б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием.
в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. 
R=AB/√3 ⇒ AB=R√3=2a√3.
P=3AB=6a√3.
Sб=6a√3·2a/2=6a²√3 (ед²).


image
(34.9k баллов)