1) Найти: кв. кор. из 17/cos x; если ctg x= -4, x принадлежит (3пи/2 ; 5пи/2) 2) (1 -...

0 голосов
239 просмотров

1) Найти: кв. кор. из 17/cos x; если ctg x= -4, x принадлежит (3пи/2 ; 5пи/2)
2) (1 - 2sin в кв. 54) / 8tg9 * sin в кв. 99
3) кв. кор. из 2 * ( (sin40 * cos5 - sin230 * sin5) / (sin25 * sin35 - sin115 * cos35) )


Алгебра (134 баллов) | 239 просмотров
Дан 1 ответ
0 голосов

X лежит в 4-ой четверти - там cos>0 sin <0 <br>используем формулы:
ctg^2(x) = cos^2(x) / sin^2(x) = 16/9,
sin^2 (X) + cos^2 (X) = 1

обозначим cos^2(X) = y
тогда sin(X) = -(1 - y)^1/2

y / (1 - y) = 16/9 -> y (1+16/9) = 16/9
y = 16/25

откуда:
cos(x) = 4/5 sin(x) = -3/5

(81 баллов)