
, при любых х. Поэтому x>=-1
до -2 производная положительна, значит функция растет. от -2 до 4/3 убывает, и от 4/3 опять растет. В точке 4/3 (проверяется) функция принимает положительное значение. Значит у функции единственный корень, меньший -2. Поэтому из области определения первого подкоренного выражения x>=-1, второе подкоренное всегда положительно.
Теперь возводим все в квадрат и получаем
Вместе с областью определения имеем:
x∈[-1,1]∪[5/3,+∞)