Найдите площадь фигуры, ограниченной линиями:
До этого решал только такие примеры, в которых есть два "x", и вторая "y" всегда рана 0. А решение такого примера с неизвестным значением второй "y" и с одним "x" встречаю впервые, поэтому не знаю как правильно решать, в моём учебнике нет объяснения. По одному примеру разобрался, чтобы решить надо сделать:
1. Найти точки пересечения функций y=16/x^2 и y=2x, эта точка будет второй "x";
2. Найти первообразные этих функций, вычислить площади по отдельности;
3. Отнять от площади второго площадь первого, т.е. S(2x) - S(16/x^2).
Получаю правильный ответ. Вот решение:
Теперь вопросы.
1. Решая систему уравнений нашли "x", но также нашли "y" в системе. Что эта "y" даёт? Нужна ли она?
2. Почему мы именно от площади второго "y" отнимаем площадь первого "y"? Если переиначить этот вопрос: как понимать, какая "y" первая и какая вторая, т.е. как понимать от площади какой y отнимать площадь другого "y"?
3. В задании даётся один "x", самостоятельно находим второе. Но если находятся несколько корней функции при решении системы, то какую брать большую или меньшую? Показываю в следующем примере:
Да, в данном примере не было разницы возьми я "+1" или "-1", т.к. во второй и четвертой степени любое неотрицательное меняется на положительное. Ну а если бы были разные корни у "x"? К примеру решая систему допустим получаю x1= 3, x2=5. Какую брать?