Пусть O - точка пересечения диагоналей. Известно, что диагонали ромба перпендикулярны друг другу, а также делятся точкой пересечения пополам.
По теореме Пифагора находим BO² = AB²-AO² = 100 - 25 = 75;
BO = √75 = 5√3.
BO = OD => BD = 2BO = 2*5√3 =10√3
Т.к. AO = 2AB, то угол ABP = 30°, тогда и угол ABC= 60°, т.к. диагонали делят углы, из вершин которых они выходят, на два равных.
Мы знаем, что противоположные углы ромба равны, значит, угол ADC = 60°.
Противоположные углы DAB и BCD равны. Находим угол DAB+BCD. DAB+BCD = 360°-60°-60°=240° => угол DAB = 120°, угол BCD = 120°.