Решение
1) y = 8tg3x/(1 + e^(x/4))
y` = [(8*3/cos²3x)*(1 + e^x) - (1/4)*8*tg3x]/ (1 + e^x)² =
= [24 + 24*(e^x) - 2*cos²3x*tg3x] / [cos²3x*(1 + e^x)] =
= [24 + 24*(e^x) - 2*cos²3x*(sin3x/cos3x)] / [cos²3x*(1 + e^x)] =
= [24 + 24*(e^x) - 2*sin3x*cos3x)] / [cos²3x*(1 + e^x)] =
= [24 + 24*(e^x) - sin6x] / [cos²3x*(1 + e^x)]
2) y = x^(sinx³)
y` = sinx³ * x^(sinx³ - 1) * cosx³ * 3x² =
= sinx³ * cosx³ * 3x² *x^(sinx³ - 1) =
= 2*sinx³ * cosx³ * 1,5x² *x^(sinx³ - 1) =
= sin(2x³) * 1,5x² *x^(sinx³ - 1)