помогите пожалуйста Вычислить интегралы

0 голосов
51 просмотров

помогите пожалуйста Вычислить интегралы


image

Математика (47 баллов) | 51 просмотров
Дан 1 ответ
0 голосов
Правильный ответ


1)

\int{ arcsin^2{2x} } \, dx = x \cdot arcsin^2{2x} - \int{x} \, d(arcsin^2{2x}) =

= x \cdot arcsin^2{2x} - \int{ 2 x \cdot arcsin{2x} } \, d(arcsin{2x}) =

= x \cdot arcsin^2{2x} - \int{ arcsin{2x} \cdot \sin{ ( arcsin{2x} ) } } \, d(arcsin{2x}) =

= x \cdot arcsin^2{2x} + \int{ arcsin{2x} } \, d \cos{ ( arcsin{2x} ) } =

= x \cdot arcsin^2{2x} + arcsin{2x} \cdot \cos{ ( arcsin{2x} ) } - \int{ \cos{ ( arcsin{2x} ) } } \, d(arcsin{2x}) =

= x \cdot arcsin^2{2x} + arcsin{2x} \cdot \sqrt{ 1 - 4x^2 } - \sin{ ( arcsin{2x} ) } + C =

= arcsin{2x} ( x \cdot arcsin{2x} + \sqrt{ 1 - 4x^2 } ) - 2x + C \ ;


поскольку вещественная    D ( arcsin^2{2x} ) \equiv [ -\frac{1}{2} ; \frac{1}{2} ] \ ,    то значение интеграла на вещественных значениях функции:

\int\limits_0^1{ arcsin^2{2x} } \, dx \ \Rightarrow \ \int\limits_0^{1/2}{ arcsin^2{2x} } \, dx = \\\\ = arcsin{2x} ( x \cdot arcsin{2x} + \sqrt{ 1 - 4x^2 } ) |_0^{1/2} + 2x |_{1/2}^0 = \\\\ = ( arcsin{ ( 2 \cdot \frac{1}{2} ) } \cdot ( \frac{1}{2} \cdot arcsin{ ( 2 \cdot \frac{1}{2} ) } + \sqrt{ 1 - 4 ( \frac{1}{2} )^2 } ) - \\ - arcsin{ ( 2 \cdot 0 ) } \cdot ( 0 \cdot arcsin{ ( 2 \cdot 0 ) } + \sqrt{ 1 - 4 \cdot 0^2 } ) ) + 2 \cdot ( 0 - \frac{1}{2} ) = \\\\ = ( arcsin{1} \cdot ( \frac{1}{2} \cdot arcsin{1} + \sqrt{ 1 - 4 \cdot \frac{1}{4} } ) - arcsin{0} \cdot ( 0 \cdot arcsin{0} + \sqrt{ 1 - 4 \cdot 0 } ) ) - 2 \cdot \frac{1}{2} = \\\\ = ( \frac{ \pi }{2} ( \frac{1}{2} \cdot \frac{ \pi }{2} + \sqrt{ 1 - 1 } ) - 0 \cdot ( 0 \cdot 0 + \sqrt{ 1 - 0 } ) ) - 1 = \\\\ = ( \frac{ \pi }{2} ( \frac{ \pi }{4} + \sqrt{ 0 } ) - 0 \cdot ( 0 + \sqrt{1} ) ) - 1 = ( \frac{ \pi }{2} ( \frac{ \pi }{4} + 0 ) - 0 \cdot ( 0 + 1 ) ) - 1 = \\\\ = ( \frac{ \pi }{2} \cdot \frac{ \pi }{4} - 0 \cdot 1 ) - 1 = ( \frac{ \pi }{2} \cdot \frac{ \pi }{4} - 0 ) - 1 = \frac{ \pi }{2} \cdot \frac{ \pi }{4} - 1 = \frac{ \pi^2 }{8} - 1 \ ;


О т в е т :     \int\limits_0^1{ arcsin^2{2x} } \, dx \ \Rightarrow \ \int\limits_0^{1/2}{ arcsin^2{2x} } \, dx = \frac{ \pi^2 }{8} - 1 \ ;



2)

<img src="https://tex.z-dn.net/?f=+%5Cint%7B+%5Cfrac%7B+3dx+%7D%7B+%5Csqrt%7B+3x+%2B+1+%7D+%2B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D+%7D+%3D+%5Cint%7B+%5Cfrac%7B+d%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E4+%7D%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+%2B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D+%7D+%3D+%5Cint%7B+%5Cfrac%7B+4+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E3+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+%2B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D+%7D+%3D+%5C%5C%5C%5C+%3D+4+%5Cint%7B+%5Cfrac%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%3D+4+%5Cint%7B+%5Cfrac%7B+%28+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+%2B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+-+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%3D+%5C%5C%5C%5C+%3D+4+%5Cint%7B+%5Cfrac%7B+%28+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+%2B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+-+4+%5Cint%7B+%5Cfrac%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%5Ccdot+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%3D+%5C%5C%5C%5C+%3D+4+%5Cint%7B+%5Cfrac%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%29+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%5C%2C+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+-+4+%5Cint%7B+%5Cfrac%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+-+1+%29+%5Ccdot+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%3D+%5C%5C%5C%5C+%3D+4+%5Cint%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D+%5C%2C+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+-+4+%5Cint%7B+%5Cfrac%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%29+%5Ccdot+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%2B+4+%5Cint%7B+%5Cfrac%7B+d+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%29+%7D%7B+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7D+%7D+%3D+%5C%5C%5C%5C+%3D+4+%5Ccdot+%5Cfrac%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%29%5E2+%7D%7B2%7D+-+4+%5Cint%7B+d+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%7D+%2B+4+%5Cln%7B+%7C+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%7C+%7D+%3D+%5C%5C%5C%5C+%3D+2+%5Csqrt%7B+3x+%2B+1+%7D+-+4+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+4+%5Cln%7B+%28+%5Csqrt%5B4%5D%7B+3x+%2B+1+%7D+%2B+1+%29+%7D+%2B+C+%5C+%3B+" id="TexFormula11" title=" \int{ \frac{ 3dx }{ \sqrt{ 3x + 1 } + \sqrt[4]{ 3x + 1 } } } = \int{ \frac{ d( \sqrt[4]{ 3x + 1 } )^4 }{ ( \sqrt[4]{ 3x + 1 } )^2 + \sqrt[4]{ 3x + 1 } } } = \int{ \frac{ 4 ( \sqrt[4]{ 3x + 1 } )^3 d \sqrt[4]{ 3x + 1 } }{ ( \sqrt[4]{ 3x + 1 } )^2 + \sqrt[4]{ 3x + 1 } } } = \\\\ = 4 \int{ \frac{ ( \sqrt[4]{ 3x + 1 } )^2 d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } = 4 \int{ \frac{ ( ( \sqrt[4]{ 3x + 1 } )^2 + \sqrt[4]{ 3x + 1 } - \sqrt[4]{ 3x + 1 } ) d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } = \\\\ = 4 \int{ \frac{ ( ( \sqrt[4]{ 3x + 1 } )^2 + \sqrt[4]{ 3x + 1 } ) d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } - 4 \int{ \frac{ \sqrt[4]{ 3x + 1 } \cdot d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } = \\\\ = 4 \int{ \frac{ ( \sqrt[4]{ 3x + 1 } + 1 ) \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } \, d \sqrt[4]{ 3x + 1 } - 4 \int{ \frac{ ( \sqrt[4]{ 3x + 1 } + 1 - 1 ) \cdot d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } = \\\\ = 4 \int{ \sqrt[4]{ 3x + 1 } } \, d \sqrt[4]{ 3x + 1 } - 4 \int{ \frac{ ( \sqrt[4]{ 3x + 1 } + 1 ) \cdot d \sqrt[4]{ 3x + 1 } }{ \sqrt[4]{ 3x + 1 } + 1 } } + 4 \int{ \frac{ d ( \sqrt[4]{ 3x + 1 } + 1 ) }{ \sqrt[4]{ 3x + 1 } + 1 } } = \\\\ = 4 \cdot \frac{ ( \sqrt[4]{ 3x + 1 } )^2 }{2} - 4 \int{ d \sqrt[4]{ 3x + 1 } } + 4 \ln{ | \sqrt[4]{ 3x + 1 } + 1 | } = \\\\ = 2 \sqrt{ 3x + 1 } - 4 \sqrt[4]{ 3x + 1 } + 4 \ln{ ( \sq
(8.4k баллов)