Стороны треугольника АВС касаются шара.Найти радиус шара,если АВ=8 ,АС=12, Вс=10 и...

0 голосов
654 просмотров

Стороны треугольника АВС касаются шара.Найти радиус шара,если АВ=8 ,АС=12, Вс=10 и расстояние от центра шара О до плоскости треугольника АВС равно корень из 12.


Геометрия (15 баллов) | 654 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть расстояние до плоскости тр-ка равно d=кор12, радиус вписанной в тр. АВС окр-ти (сечения сферы пл-тью АВС) равен r. Тогда радиус шара:

R = кор(d^2 + r^2). Найдем r.

Воспользуемся двумя формулами для площади тр-ка:

S = p*r   и    S = кор[p(p-a)(p-b)(p-c)], где р=(a+b+c)/2 - полупериметр.

р = (8+10+12)/2 = 15

Тогда площадь по формуле Герона:

S = кор(15(15-8)(15-10)(15-12)) = кор(15*7*5*3)= 15кор7

Тогда: 15кор7 = 15*r

Отсюда r = кор7

Тогда радиус шара:

R = кор(12 + 7) = кор19.

Ответ: корень из 19

(84.9k баллов)