1)Найдите область определения функции y= \sqrt[4]{4-x ^{2} } 2) Изобразите эскиз графика...

0 голосов
104 просмотров

1)Найдите область определения функции y= \sqrt[4]{4-x ^{2} }y= \sqrt[4]{4-x ^{2} }
2) Изобразите эскиз графика функции y=x^{-5}
3) Указать область определения и множество значений функции.
4) Выяснить, на каких промежутках функция убывает.


Алгебра (154 баллов) | 104 просмотров
Дан 1 ответ
0 голосов

1
4-x²≥0
(2-x)(2+x)≥0
x=2 u x=-2
x∈[-2;2]
2
y=1/x^5
Гипербола в 1 и 3 четверти.
График такой же как у=1/х,только ветви еще ближе к осям
область определения x∈(-∞;0) U (0;∞)
 множество значений y∈(-∞;0) U (0;∞)
убывает на всей области определения