ПОМОГИТЕ,ПОЖАЛУЙСТА ОЧЕНЬ СРОЧНО Сколько существует значений Р, при которых для корней х1...

0 голосов
32 просмотров

ПОМОГИТЕ,ПОЖАЛУЙСТА
ОЧЕНЬ СРОЧНО
Сколько существует значений Р, при которых для корней х1 и х2 уравнения х^2+Px+12=0 выполняется равенство модуль(х1-х2)=2


Алгебра (2.7k баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

X² +px +12 = 0
  D= p²-4*12 > 0  ---->      -4√3 < p < 4√3  - допустимые значения для p
x1=( -p -√(p²-4*12) ) /2
x2= (-p + √(p² - 4*12) )/2

| x1 - x2 | = 2
| √(p²-48)| =2
1)   -(p² -48) =2  ---> p1= - √ (46)   p2= +√(46)
 2)    p² - 48 = 2  ----> p3 =  - √50  p4 = +√(50)
Ответ 4 ( четыре р существует, для которых | x1 -x2| = 2)

(87.0k баллов)
0

спасибо огромное!

0

корень(50) =7, а 4*корень(3)=6,9 7> 6,9, отсюда р3 и р4 не удовлетворяют D>0, их надо исключить. ответ два р.

0

спасибо!

0

|x₁-x₂| =√(x₁-x₂)² =√((x₁+x₂)² -4x₁x₂) =√(p² -4*12)=√(p² -48) ⇔ 2=√(p² -48) ⇒ p=±2√13.