![image](https://tex.z-dn.net/?f=y%3Dx%2B%5Csqrt%7B1-x%5E2%7D%5C%3B+%2C%5C%5C%5C%5C+ODZ%3A%5C%3B+%5C%3B+1-x%5E2+%5Cgeq+0%2C%5C%3B+x%5E2-1+%5Cleq+0%2C%5C%3B+%28x-1%29%28x%2B1%29+%5Cleq+0%5C%5C%5C%5Cx%5Cin+%5B%5C%2C+-1%3B1%5C%2C+%5D%5C%5C%5C%5Cy%27%3D1%2B%5Cfrac%7B-2x%7D%7B2%5Csqrt%7B1-x%5E2%7D+%7D%3D1-%5Cfrac%7Bx%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%3D0%5C%5C%5C%5C%5Cfrac%7Bx%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%3D1%5C%3B+%2C%5C%3B+x%3D%5Csqrt%7B1-x%5E2%7D%5Cgeq+0%5C%3B+%5Cto+%5C%3B+1-x%5E2%3Dx%5E2%5C%3B+%2C2x%5E2%3D1%5C%3B+%2C%5C%3B+x%5E2%3D%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5Cx%3D%5Cpm+%5Cfrac%7B1%7D%7B%5Csqrt2%7D%5C%2C+%2Cx%3D%5Cfrac%7B1%7D%7B%5Csqrt2%7D%3E0%5C%5C%5C%5CZnaki%5C%3B+y%27%5C%3B+%3A%5C%3B+%5C%3B+%280%29%2B%2B%2B%28%5Cfrac%7B1%7D%7B%5Csqrt2%7D%29---%281%29%5C%5C%5C%5Cx%3D%5Cfrac%7B1%7D%7B%5Csqrt2%7D%3Dx_%7Bmax%7D)
0\\\\Znaki\; y'\; :\; \; (0)+++(\frac{1}{\sqrt2})---(1)\\\\x=\frac{1}{\sqrt2}=x_{max}" alt="y=x+\sqrt{1-x^2}\; ,\\\\ ODZ:\; \; 1-x^2 \geq 0,\; x^2-1 \leq 0,\; (x-1)(x+1) \leq 0\\\\x\in [\, -1;1\, ]\\\\y'=1+\frac{-2x}{2\sqrt{1-x^2} }=1-\frac{x}{\sqrt{1-x^2}}=0\\\\\frac{x}{\sqrt{1-x^2}}=1\; ,\; x=\sqrt{1-x^2}\geq 0\; \to \; 1-x^2=x^2\; ,2x^2=1\; ,\; x^2=\frac{1}{2}\\\\x=\pm \frac{1}{\sqrt2}\, ,x=\frac{1}{\sqrt2}>0\\\\Znaki\; y'\; :\; \; (0)+++(\frac{1}{\sqrt2})---(1)\\\\x=\frac{1}{\sqrt2}=x_{max}" align="absmiddle" class="latex-formula">