![log_{\sqrt{2}} \ (x^2-3x)<4 log_{\sqrt{2}} \ (x^2-3x)<4](https://tex.z-dn.net/?f=log_%7B%5Csqrt%7B2%7D%7D+%5C+%28x%5E2-3x%29%3C4)
ОДЗ:
0 \\ \\ x^2-3x=0 \\ \\ x(x-3)=0 \\ \\ x_1=0 \\ \\ x_2=3 \\ \\ x \in (-\infty;\ 0) \cup (3;\ +\infty)" alt="x^2-3x>0 \\ \\ x^2-3x=0 \\ \\ x(x-3)=0 \\ \\ x_1=0 \\ \\ x_2=3 \\ \\ x \in (-\infty;\ 0) \cup (3;\ +\infty)" align="absmiddle" class="latex-formula">
Решение:
![log_{\sqrt{2}} \ (x^2-3x) log_{\sqrt{2}} \ (x^2-3x)](https://tex.z-dn.net/?f=log_%7B%5Csqrt%7B2%7D%7D+%5C+%28x%5E2-3x%29)
Ответ: ![x \in (3;\ 4) x \in (3;\ 4)](https://tex.z-dn.net/?f=x+%5Cin+%283%3B%5C+4%29)