2-3cos4x-sin2x=0 x принадлежит -pi/8;5pi/8 включительно

0 голосов
79 просмотров

2-3cos4x-sin2x=0
x принадлежит -pi/8;5pi/8 включительно


Алгебра (35 баллов) | 79 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

2 - 3cos4x -sin2x = 0 ; x ∈[-π/8 ; 5π/8 ] .
* * * cos2α=cos²α -sin²α =  1-sin²α -sin²α  =1 -2sin²α * * * 
* * * cos4x =cos2*(2x) = 1 -2sin²2x  * * * 
2 - 3(1-2sin²2x) -sin2x = 0 ;
6sin²2x -sin2x -1 = 0 ;
6t² -t -1 = 0   ; * * * D =1² -4*6*(-1) =25 =5²  * * *
t₁= (1-5)/(2*6) = -1/3 ;
t₂= (1+5)/12 = 1/2.

а) sin2x=1/2 ;
[ 2x = π/6 +2πn ; 2x =(π -π/6) +2πn , n∈Z.
[ x = π/12 +πn ; x =5π/12+πn , n∈Z.
учитывая условия  x ∈ [-π/8;5π/8 ] , получается  [x = π/12 ; x=5π/12.
---
б) sin2x= -1/3⇔2x =(-1)^(n+1) arcsin(1/3)+πn, n∈Z. 
[ x =  -(1/2)arcsin(1/3) + πn ; x=(1/2)*(-π+arcsin(1/3)+πn, n∈Z;

ответ:  -(1/2)arcsin(1/3) ; π/6 ;  5π/12 .

(181k баллов)