Два радиуса вписанной окружности, с одной стороны, равны (a + b - c), где a,b - катеты треугольника, с другой 2*S/(P:2), что по условию равно 2*240:40 = 12. Периметр a + b + c = 80 по условию. Тогда (a - a) + (b - b) + (c + c) = 80 - 12 = 68, 2с = 68, с = 34. Тогда радиус описанной окружности, равный половине гипотенузы, равен 34:2 = 17 м.
Ответ: 17 м.