решите треугольник авс ,если угол В=30 градусов,угол С=105градусов,ВС 3 квадратных корня...

0 голосов
55 просмотров

решите треугольник авс ,если угол В=30 градусов,угол С=105градусов,ВС 3 квадратных корня из 2


Геометрия (15 баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

По теореме синусов:

АС/sinB = BC/sinA

A = 180 - 30 - 105 = 45 град,  sinA = (кор2)/2,  sinB = sin30 = 1/2

Получим:   АС/(1/2)  = (3кор2)/((кор2)/2),   2*АС = 6,   АС = 3

Теперь найдем АВ:

АВ/sin105  = AC/sin30 = 3/(1/2) = 6

То есть АВ = 6*sin105 = 6*sin75 = 6*sin(45+30) = 6*(sin45*cos30 + sin30*cos45)=

=6*( (кор6)/4  +  (кор2)/4) = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно)

Ответ: угол А = 45 гр.  АС = 3,  АВ = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно)


(84.9k баллов)