Заметим, что выражение состоит из 4 сомножителей. Первый из них делится на 5, второй делится на 2, так как является чётным. Теперь рассмотрим последние два сомножителя. Известно, что среди любых 3 последовательных натуральных чисел ровно одно делится нацело на 3. То есть, среди чисел
такое число имеется. Очевидно, что
не делится на 3. Значит, в нашем произведении один из двух последних сомножителей обязательно делится на три.
Таким образом, мы получили, что наше выражение можно представить в виде произведения 4 сомножителей. Среди них первый делится на 5, второй делится на 2, и один из двух последних делится на 3. Тогда всё число делится на 5*2*3=30, что и требовалось.