Диаметр шара радиуса 9 см разделен ** 3 равные части. Через точки деления проведены...

0 голосов
670 просмотров

Диаметр шара радиуса 9 см разделен на 3 равные части. Через точки деления проведены плоскости, перпендикулярные диаметру. Найдите объем образовавшихся частей ( 2 сегмента и шаровой слой)


Геометрия (177 баллов) | 670 просмотров
Дан 1 ответ
0 голосов

Объём шарового сегмента рассчитывается по формуле: Vсегм=πh²(R-(h/3)), где h - высота сегмента.
Высота сегмента - треть диаметра шара: h=D/3=2R/3=6 см.
Vсегм=6²π(9-2)=252π≈791.7 см³.
Объём шарового слоя равен объёму шара за вычетом объёмов двух крайних сегментов, которые равны.
Vсл=Vш-2Vсегм
Vш=4πR³/3=972π см³
Vсл=972п-2·252π=468π≈1470.3 см³

(34.9k баллов)