1. Точка A лежит в плоскости, точка B-** расстоянии 12,5 м от этой плоскости. Найдите...

0 голосов
341 просмотров

1. Точка A лежит в плоскости, точка B-на расстоянии 12,5 м от этой плоскости. Найдите расстояние от плоскости до точки M, делящей отрезок AB в отношении AM:MB=2:3.
2. Из точки k плоскости проведены две наклонные, одна из которых на 6 см длиннее другой. Проекции наклонных равны 17 и 7 см. Найдите наклонные.
3. Какой длины нужно взять перекладину, чтобы её можно было положить концами на две вертикальные опоры высотой 4 м и 8 м, поставленные на расстоянии 3 м одна от другой?


Геометрия (173 баллов) | 341 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.  
АС= проекция АВ на плоскость, 
⇒ А, Н и С лежат на одной прямой. 
Отрезки, перпендикулярные  плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, 
угол А общий для  
∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2
ВС:МН=5:2
МН=2•(12,5:5)=5 м 
    Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
 ВС=а,  ВА=а+6
ВН- расстояние от общего конца В до плоскости. 
Т.к. это расстояние общее, ВН плоскости, то 
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. 
Т.к. обе вертикальные, то они параллельны. 
Т - выше К на 4м,  расстояние между К и точкой Р на ТЕ=3м,
 ∆ КТР  с отношением катетов 3:
- египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). 
Ответ - 5 м. 
(228k баллов)