Решите уравнение 2sin^2x- cos^4x=1-sin^4x
= cos^4x - sin^4x = (cos^2x + sin^2x)(cos^2x - sin^2x) = (1)(1 - sin^2x - sin^2x) = 1 - sin^2x - sin^2x = 1 - 2sin^2x
2sin^2x-cos^4x=1-sin^4x
2sin^2x-cos^4x=cos4x
2sin^2x=0
2x=pin n e Z
x=pi/2n e Z