Треугольник ABC равнобедренный с основанием AC. Через произвольную точку M его...

0 голосов
250 просмотров

Треугольник ABC равнобедренный с основанием AC. Через произвольную точку M его биссектрисы BD проведены прямые , параллельные его сторонам AB и BC и
пересекающие отрезок AC в точках E и F соответственно. Докажите, что DE=DF.


Геометрия (71 баллов) | 250 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Биссектриса, проведенная к основанию равноб. тре-ка яв-ся высотой и медиано⇒ АД=ДС, ВД⊥АС
т.к. MF // ВС, то ∠MFE =∠ВСА
т.к. МЕ//АВ, то ∠MEF   = ∠BAC   ⇒∠MEF=∠MFE  ⇒ ΔEMF - равноб., т.к. углы при основании EF равны.
МД в Δ EMF яв-ся высотой, проведенной к основанию равноб. тре-ка, а значит яв-ся бис. и медианой, т.е. ЕД=ЕF

(35.8k баллов)