Площадь треугольника ABC равна 30 см в квадрате. ** стороне AC взята точка D так, что AD...

0 голосов
278 просмотров

Площадь треугольника ABC равна 30 см в квадрате. На стороне AC взята точка D так, что AD : DC = 2:3. Длина перпендикуляра DE, проведенного к стороне BC, равна 9 см. Найти BC.


Геометрия (267 баллов) | 278 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Опустим перпендикуляр из точки А на сторону ВС - пусть он будет АМ.
Так как 2 перпендикуляра параллельны между собой, то они как катеты входят в подобные треугольники с общей вершиной С.
Тогда перпендикуляр АМ равен 9*(2+3) / 3 = 15 см.
Отсюда находим сторону ВС из формулы площади треугольника, которая нам известна:
S = (1/2)* ВС*АМ,
Тогда ВС = 2S / АМ = 2*30 / 15 = 60 / 15 = 4 см.

(309k баллов)