Дана функция f(x)=2x^3+3^2-1. Найдите: а) промежутки возрастания и убывания функции,...

0 голосов
117 просмотров

Дана функция f(x)=2x^3+3^2-1.
Найдите:
а) промежутки возрастания и убывания функции, точки экстремума.
б) наибольшее и наименьшее значения функции на отрезке [-1; 2].
P.S. Срочно нужно. Помогите, пожалуйста.


Математика (15 баллов) | 117 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Найдём точки экстремума:
f(x)=2x^3+3x^2-1\\
f'(x)=6x^2+6x=0\\
6x(x+1)=0\\
x_1=-1, x_2=0
Отметим их на координатной прямой и проверим знак производной на каждом интервале:
____+______-1______-_____0_____+_____
Промежутки возрастания:
x\in (-\infty, -1) \cap(0, +\infty)
Промежуток убывания:
x\in (-1,0)
Точка максимума:
x_{max}=-1
Точка минимума:
x_{min}=0
Найдём наибольшее и наименьшее значения функции на интервале. Для этого подставим в функцию границы интервала и точки экстремума:
f(-1)=2(-1)^3+3(-1)^2-1=2*(-1)+3-1=\\=-2+3-1=0
f(0)=-1
f(2)=2*2^3+3*2^2-1=16+12-1=3
Наибольшее значение = 3 при х=2, наименьшее = -1 при х=0

(6.3k баллов)
0

Благодарю Вас!