Sin2x=2sin^2(x-3п/2) решить уравнение

0 голосов
91 просмотров

Sin2x=2sin^2(x-3п/2) решить уравнение


Алгебра (25 баллов) | 91 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

sin2x=2sin^2(x-\frac{3\pi}{2})\\\\sin2x=2cos^2x\\\\2sinx\cdot cosx-2cos^2x=0\\\\2cosx(sinx-cosx)=0\\\\a)\; \; cosx=0\; ,\; \; x=\frac{\pi}{2}+\pi n,\; n\in Z\\\\b)\; \; sinx-cosx=0\,|:cosx\ne 0 \\\\tgx=1\\\\x=\frac{\pi}{4}+\pi k, \; k\in Z
(831k баллов)