Помогите пожалуйста решить

0 голосов
17 просмотров

Помогите пожалуйста решить


image

Алгебра (269 баллов) | 17 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1.
а) f(x) =(1/2)*x⁴ -x⁵ +5 ;
f '(x) = ((1/2)*x⁴ -x⁵ +5)= (1/2)*4*x³ -5x⁴ +0 =2x³ -5x⁴.
---
б) f(x)=4x -1/x³.
 f'(x)=(4x -1/x³) ' =(4x - x^(-3)) '= 4 + 3/x⁴.
-------
2.
а) f(x)=x*cosx 
f'(x)= (x*cosx)' =(x)'*cosx+x*(cosx)' =cosx-x*sinx.
f'(-π/2)= cos(-π/2)- (-π/2)*sin(-π/2) =cosπ/2 +π/2*(-sinπ/2)= - π/2.
б) f(x) =(3x+4)⁵ ;
 f'(x) = ((3x+4)⁵)' =5(3x+4)⁴*(3x+4)'=5(3x+4)⁴*3=15(3x+4)⁴.
f'(-1) =15(3*(-1)+4)⁴ =15.
-------
3.
f(x) =cos2x +√3*x ; f '(x)=0 .  ||ошибочно f '(-1)=0 ???? ||
f '(x) =(cos2x +√3*x)' = -2sin2x +√3 .
f '(x) =0 ⇔ -2sin2x +√3 =0⇒sin2x =(√3)/2 ;
2x =(-1)^n*π/3 +πn , n∈Z.
x =(-1)^n*π/6 +π*n/2 , n∈Z.
-------
4.
f(x) =6x -x³ ;  f '(x) ≤0.
f '(x) =(6x -x³)' =6 -3x² =3(2 -x²). 
f'(x)  ≤ 0 ⇒ 3(2 -x²) ≤ 0 ⇔ x² -2 ≥0 ⇒x∈(-∞; -√2] ∪[√2;∞).

(181k баллов)
0

Спасибо большое

0 голосов

1)а) f(x)= 1/2x^4-x^5+5= (1/2x^4)'-(x^5)'+(5)'=1/2*4x^3-5x^4=2x^3-5x^4
б) f(x)=4x-1/x^3=(4x)'-(1/x^3)'=4-(x^-3)'=4+3/x^4

(3.1k баллов)