У квадратного листа бумаги 10х10 сначала загнули справа полоску шириной 1, потом сверху...

0 голосов
53 просмотров

У квадратного листа бумаги 10х10 сначала загнули справа полоску шириной 1, потом сверху полоску высотой ,1 потом снова справа, потом снова сверху, и так далее, пока не получился квадрат 4х4. После этого правый верхний квадратик 1х1 проткнули шилом. Сколько получится дырок, если развернуть этот лист?


Математика (16 баллов) | 53 просмотров
Дан 1 ответ
0 голосов

@
лист загнули справа
@


Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».

Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).

Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).

Будем согнутый лист на любой стадии называть «фигурой».
Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):

1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);

2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)

3) [один] «однослойный остаток».


При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «углового квадратика». При этом важно понимать, что толщина другой «краевой полосы» не увеличивается.

Когда после всех загибаний получилась «фигура» в виде конечного квадрата 4 на 4 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 3 на 3 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».

Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 3 (трём) сантиметрам.

Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 4 см, то значит, в совокупности, с каждой стороны было загнуто по 6 сантиметра листа. А именно: 6 сантиметров справа и 6 сантиметров сверху. Значит в «краевых полосах» сосредоточено 6 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 7 слоёв листа.

Площадь «краевой полосы» равна трём квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 7 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 3*7*2 = 42 «ячейки».

Площадь «однослойного остатка», размером 3x3 см – равна 9 квадратным сантиметрам и содержит в себе 9 «ячеек».

Всего было 100 «ячеек». Из них 42 + 9 = 51 «ячейку» мы уже нашли. Остальные 49 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 49 слоёв исходного листа.

Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 49 дырок.


Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографии с 49-тью дырками.


О т в е т :  49 дырок.



image
(8.4k баллов)
0

Максимальный вариант 36. Все варианты: а)5 б)9 в)16 г)25 д)36

0

извените не то посмотрел

0

Задачу с ответом 25 дырок у меня тоже решена. Там загибов было не 6, а 4