Сторона правильного треугольника, вписанного в окружность, равна:
а₃ = R√3.
Сторона правильного четырёхугольника, вписанного в окружность, равна:
а₄ = R√2.
По условию задачи R√3 - R√2 = 2.
Отсюда радиус окружности равен:
R = 2 / (√3 - √2) =
6.292529.
Окружность, описанная около первого квадрата, является вписанной в заданный (второй) квадрат.
Сторона этого квадрата равна : а = 2R = 2*
6.292529 = 12.58506.
Тогда периметр заданного квадрата равен:
Р = 4а = 4*
12.58506 = 50.34023.