В равнобедренной трапеции MNPQ точки E и F- середины диагоналей MP и NQ. Найдите длину...

0 голосов
104 просмотров

В равнобедренной трапеции MNPQ точки E и F- середины диагоналей MP и NQ. Найдите длину отрезка EF если NP=7 MQ=27


Математика (15 баллов) | 104 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Через EF проведем прямую E1F1 || MQ и NP. Рассмотрим треуг.MNP: E1E-ср.линия его (т-ма Фалеса), E1E=NP/2=7/2=3,5.  Рассм. треуг. NPQ: FF1=NP/2=7/2=3,5.  E1F1-ср.линия трап.MNPQ, тогда E1F1=(MQ+NP)/2=(27+7)/2=17.  Отсюда:E1F1=E1E+EF+FF1, 17=3,5+EF+3,5  17=7+EF  EF=10.

(655 баллов)