В параллелограмме один из углов равен 120 градусов. Квадрат большей диагонали равен 3....

0 голосов
42 просмотров

В параллелограмме один из углов равен 120 градусов. Квадрат большей диагонали равен 3. Найти стороны параллелограмма, если его периметр равен 4


Геометрия | 42 просмотров
Дан 1 ответ
0 голосов

Если мы Построим Параллелограмм АВСД с квадратом диагонали АС^2= 3, а Угол В будет равен 120*, а периметр, то есть сумма сторон его будет равна 4, то получим фигуру в которой, диагональ ВД будет делить её на 2равносторонних треугольника, так как угол А будет равен углу С и будет равен 60*. А так как треугольник АВД=треугольнику ВСД, то их стороны будут равны 1; то есть все стороны нашего параллелограмма будут равны 1. Что и требовалось для решения задачи. Ответ :АВ=ВС=СД=АД=1

(3.9k баллов)
0

Можно.

0

То, что диагональ ВД будет делить параллелограмм на 2 равносторонних треугольника, нужно доказать вычислениями. Совсем не обязательно диагональ ВД - биссектриса тупого угла параллелограмма.

0

Поэтому решение должно быть основано на теореме косинусов. Но в ответе действительно стороны параллелограмма равны 1.