Два натуральных числа при деле ним ** 4 дают в остатке соответсвенно 1 и 3 докажет что...

0 голосов
30 просмотров

Два натуральных числа при деле ним на 4 дают в остатке соответсвенно 1 и 3 докажет что сумма кубов этих чисел делятся на 4


Алгебра (44 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Используя свойства остатков

первое число дает остаток 1 при делении на 4
значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1
число 1 при делении на 4 дает остаток 1
итого куб первого числа при делении на 4 даст остаток 1

второе число дает остаток 3 при делении на 4
значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27
число 27 при делении на 4 дает остаток 3

сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4,
так как 4 при делении на 4 дает остаток 0, то
сумма кубов этих чисел кратна 4
----------------------------------
второй способо

так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число
аналогично второе можно записать в виде 4k+3, где k - некоторое целое число

сумма кубов этих чисел
(4n+1)^3+(4k+3)^3=(4n)^3+3*(4n)^2*1+4*(4n)*1^2+1^3+(4k)^3+3*(4k)^2*3+3*(4k)*3^2+3^3=\\\\64n^3+48n^2+16n+1+64k^3+144k^2+108k+27=\\\\64n^3+48n^2+16n+64k^3+144k^2+108k+28=\\\\4(16n^3+12n^2+4n+16k^3+36k^2+27k+7)
а значит сумма кубов делится нацело на 4. Доказано

(407k баллов)