1) Решите уравнение: cos^2(П-4x)-sin(П-4x)=1;
1 -cos²(π-4x)+sin(π-4x)=0 ;
sin² (π-4x)+sin(π-4x)=0 ;
sin²4x + sin4x=0 ;
(sin4x+1)sin4x=0⇔[sin4x = -1 ; sin4x=0. ⇒[4x =-π/2+2πk ;4x=πk ,k∈Z.
[ x= -π/8+πk/2 ;x=πk/4 ,k∈Z.
-------
2) Решите уравнение: cos6x=cos3x-sin3x ;
cos2*3x =cos3x-sin3x ;
cos²3x-sin²3x = cos3x-sin3x ;
(cos3x-sin3x)(cos3x+sin3x) = cos3x-sin3x ;
(cos3x-sin3x)(cos3x+sin3x) - ( cos3x-sin3x) =0 ;
(cos3x-sin3x)(cos3x+sin3x -1) =0.⇔[cos3x-sin3x =0 ; cos3x+sin3x -1 =0.
[sin3x=cos3x ; cos3x+sin3x =1. ⇔ [tq3x=1 ; √2*cos(3x-π/4) =1.⇒
⇔ [tq3x=1 ; cos(3x-π/4) =1/√2 .
⇒ [3x =π/4+πk ; 3x-π/4 =±π/4+2πk ,k∈Z.
[3x =π/4+πk ; 3x=2πk , 3x =π/2+2πk , k∈Z .
[x =π/12 + πk/3 ; x=2πk/3 ; x =π/6+2πk/3 , k∈Z
-------
3) Решите уравнение: sin x\4=sin^2 x\16-cos^2 x\16
sin 2*(x\8)+(cos² x\16-sin² x\16) =0 ;
2sin(x\8)*cos(x\8) +cos2*( x\16) =0 ;
2cos(x\8)*(sin(x\8) +1/2) =0⇔[cos(x\8)=0 ;sin(x\8) = -1/2.
[ x\8=π\2 +πk ; x\8 =(-1)^(k+1) *π\6 +πk , k∈Z.
[x =4π +8πk ; x =(-1)^(k+1) *4π\3 +8πk , k∈Z.