Имеется 12 монет, одна из них фальшивая, но неизвестно, легче она или тяжелее обычной...

0 голосов
55 просмотров

Имеется 12 монет, одна из них фальшивая, но неизвестно, легче она или тяжелее обычной монеты.
Как за 3 взвешивания найти фальшивую монету и определить, легче она или тяжелее?
Дополнительный вопрос повышенной трудности:
А если монет 13, как найти фальшивую за те же 3 взвешивания, но уже определять легче она или тяжелее не обязательно?


Математика (320k баллов) | 55 просмотров
0

Есть даже программа, которая решает это. Типичная задача по программированию. Алгоритм через n log n

Дан 1 ответ
0 голосов
Правильный ответ

1) Сразу замечание - фальшивая МОНЕТА всегда ЛЕГЧЕ подлинной.
Кто же станет чеканить монеты себе в убыток.
2) На равноплечих весах можно получить не два результата - равно или не равно, а три: меньше, равно или больше. Это следует учитывать в алгоритме расчета.
3) Делая выбор какую чашу весов  взять для второго взвешивания (тяжелую или лёгкую)  мы делаем (в уме) ещё одно взвешивание. Наш выбор может стать правильным и не надо будет делать ещё одно взвешивание.
РЕШЕНИЕ
Для начала монеты обозначим - м.
Первое взвешивание - отложили - 4м
4м = 4м  + 4м (отложены)
1) ДА - равно - все 8м на весах  становятся   подлинными - 8П + 4м
Второе взвешивание -  3П = 3м + м (отложена)
ДА - равно - отложена - м - одна штука. 
Третье взвешивание - П ≠ м - узнаем легче она или тяжелее. - КОНЕЦ.
2) НЕТ - была отложена подлинная группа и она становится - 4П.
Важно для второго взвешивания  одновременно запомнить какую из неравных групп мы выбираем - "легкую" или "тяжелую".
Вопреки моему замечанию выберем "тяжелые" - 4м+ - вдруг фальшивая окажется тяжелой.
Второе взвешивание - 4м+ - одну монету откладываем и взвешиваем
3П = 3м  + м (отложена)
ДА - равно - 3П=3П и отложена - м+ - и фальшивая и тяжелая - КОНЕЦ.
НЕТ - на этот раз однозначно выбираем "легкую" группу - 2Пм
Третье взвешивание -  одну монету, как всегда откладываем.
П = П + м-(отложена) фальшивая и легкая- КОНЕЦ
П >м-   + П - фальшивая и легкая на весах. - КОНЕЦ.  
В приложении набросок алгоритма решения задачи.


image
(500k баллов)