СРОЧНО!!! Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны...

0 голосов
2.0k просмотров

СРОЧНО!!!
Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 15 см, а сторона основания AE=18 см. К этой плоскости проведены перпендикуляр CB, который равен 4 см, и наклонные CA и CE. Вычислите расстояние от точки C до стороны треугольника AE.


Геометрия (83 баллов) | 2.0k просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть Н - середина АЕ. Тогда ВН - медиана и высота равнобедренного ΔАВЕ.
ВН⊥АЕ, ВН - проекция СН на плоскость треугольника, ⇒
СН⊥АЕ по теореме о трех перпендикулярах.
СН - искомое расстояние.

ΔАВН: ∠АНВ = 90°, по теореме Пифагора
             ВН = √(АВ² - АН²) = √(225 - 81) = √144 = 12 см
ΔВСН: ∠СВН = 90°, по теореме Пифагора
             СН = √(СВ² + ВН²) = √(16 + 144) = √160 = 4√10 см

(80.2k баллов)