В равнобедренном треугольнике основание равно 20, а угол между боковыми сторонами равен...

0 голосов
256 просмотров

В равнобедренном треугольнике основание равно 20, а угол между боковыми сторонами равен 120(градусов). Найдите высоту,проведённую к основанию


Геометрия (12 баллов) | 256 просмотров
Дан 1 ответ
0 голосов

Дано: AC=20 см угол ABC = 120° Найти: BH. Решение: 1) треугольник ABC - равнобедренный (по условию), отсюда следует, что углы BAC и BCA равны и каждый из них по 30° ((180-120)/2). 2) т.к. высота в равнобедренной треугольнике является и медианой, и бессектрисой, то отсюда следует: угол ABH = 60° AH=HC=10 см треугольник ABH - прямоугольный( BH - высота). 3) Рассмотрим треугольник ABH: Угол ABH = 60° AH=10 см. Раз SIN угла в прямоугольном треугольнике - это отношения противолежащего катета к гипотенузе, то составим пропорцию: SIN60°=AH/AB √3/2=10/AB AB=10/(√3/2) AB=20/√3 4) По теореме Пифагора находим BH: AB²=BH²+AH² 1200=BH²+100 BH²=1200-100 BH²=1100 BH=√1100 BH=10√11 Ответ: BH = 10√11.

(97 баллов)